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Abstract

Background: Artificial intelligence (AI) systems performing at radiologist-like levels in the evaluation of digital mammogra-
phy (DM) would improve breast cancer screening accuracy and efficiency. We aimed to compare the stand-alone performance
of an AI system to that of radiologists in detecting breast cancer in DM.
Methods: Nine multi-reader, multi-case study datasets previously used for different research purposes in seven countries
were collected. Each dataset consisted of DM exams acquired with systems from four different vendors, multiple radiologists’
assessments per exam, and ground truth verified by histopathological analysis or follow-up, yielding a total of 2652 exams
(653 malignant) and interpretations by 101 radiologists (28 296 independent interpretations). An AI system analyzed these
exams yielding a level of suspicion of cancer present between 1 and 10. The detection performance between the radiologists
and the AI system was compared using a noninferiority null hypothesis at a margin of 0.05.
Results: The performance of the AI system was statistically noninferior to that of the average of the 101 radiologists. The AI
system had a 0.840 (95% confidence interval [CI] ¼ 0.820 to 0.860) area under the ROC curve and the average of the radiologists
was 0.814 (95% CI ¼ 0.787 to 0.841) (difference 95% CI ¼ �0.003 to 0.055). The AI system had an AUC higher than 61.4% of the
radiologists.
Conclusions: The evaluated AI system achieved a cancer detection accuracy comparable to an average breast radiologist in
this retrospective setting. Although promising, the performance and impact of such a system in a screening setting needs
further investigation.

Breast cancer is the most common cancer in women, and despite
important improvements in therapy, it is still a major cause for
cancer-related mortality, accounting for approximately 500 000
annual deaths worldwide (1). Population-based breast cancer
screening programs using mammography are regarded as effec-
tive in reducing breast cancer-related mortality (2–5). However,
current screening programs are highly labor intensive due to the
large number of women screened per detected cancer and the
use of double reading, especially in European screening

programs, which also leads to additional economical costs.
Moreover, despite this practice, up to 25% of mammographically
visible cancers are still not detected at screening (6–9).

Considering the increasing scarcity of radiologists in some
countries, including breast screening radiologists (10–12), alter-
native strategies to allow continuation of current screening pro-
grams are required. In addition, it is of paramount importance
to prevent visible lesions in digital mammography (DM) being
overlooked or misinterpreted.
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Since the 1990s, computer-aided detection systems have
been developed to automatically detect and classify breast
lesions in mammograms. The widespread implementation of
DM for breast cancer imaging further spurred the development
of automated detection techniques for breast cancer.
Unfortunately, no studies to date have found that traditional
computer-aided detection systems directly improve screening
performance or cost-effectiveness, mainly because of a low spe-
cificity (13,14). This has also precluded their use as a stand-
alone reader for screening mammography.

However, the field of artificial intelligence (AI) is rapidly
changing due to the success of novel algorithms based on
deep learning convolutional neural networks. These
approaches are very successful in automating cognitively diffi-
cult tasks; classic examples include self-driving cars and
advanced speech recognition. In medical imaging, deep
learning-based AI is also rapidly closing the gap between
humans and computers (15,16). It has been suggested that
such algorithms could therefore have the potential to further
improve the benefit to harm ratio of breast cancer screening
programs (17). In recent years, several deep learning-based
algorithms for automated analysis of mammograms have
been developed, some of which have already shown very
promising results when compared to radiologists, but in very
limited and homogeneous scenarios (18,19).

Therefore, in this study, we compare, at a case level, the can-
cer detection performance of a commercially available AI sys-
tem to that of 101 radiologists who scored nine different cohorts
of DM examinations from four different manufacturers as part
of reader studies previously performed for other purposes.

Methods

Artificial Intelligence System

In this study, we used an AI system for breast cancer detection
in DM and digital breast tomosynthesis (Transpara 1.4.0,
Screenpoint Medical BV, Nijmegen, the Netherlands). The sys-
tem uses deep learning convolutional neural networks, feature
classifiers, and image analysis algorithms to detect calcifica-
tions (20,21) and soft tissue lesions (22–24) in two different
modules. For each exam, on the basis of the individually clas-
sified suspicious findings, the system provides a continuous
score ranging between 1 and 10 representing the level of suspi-
cion of cancer present (where 10 represents highly suspicious
of malignancy present). This system can be applied to proc-
essed (ie, “for presentation”) DM images from multiple ven-
dors and makes use of both the mediolateral oblique and
cranio-caudal views of each breast. However, the AI system
does not use information from prior mammograms (when
available).

The AI system is trained, validated, and tested using a
database containing over 9000 mammograms with cancer
(one-third of which are presented as lesions with calcifica-
tions) and 180 000 mammograms without abnormalities. The
mammograms originate from devices from four different
vendors (Hologic; Siemens; General Electric, Waukesha, WI;
Philips, Eindhoven, the Netherlands) and institutions across
Europe, the United States, and Asia. The AI system is inde-
pendently tested with exams never used for training or vali-
dation of the algorithms. The mammograms used in this
study have never been used to train, validate, or test the
algorithms.

Digital Mammograms

We collected sets of DM examinations that were read by multi-
ple radiologists during other unrelated, and previously com-
pleted, retrospective multi-reader multi-case (MRMC) observer
studies (25–32). In those studies, DM was compared to another
modality (eg, digital breast tomosynthesis) for breast cancer de-
tection in cancer-enriched datasets. In total, nine distinct DM
datasets were obtained from different institutions across
Europe and the United States (Table 1). The review board at
each institution waived local ethical approval and informed
consent or directly approved the use of the anonymized patient
data for retrospective research.

Each dataset consisted of three items: DM exams, the radiol-
ogists’ scores of each DM exam, and their ground truth. DM
exams were processed “for presentation” 2D images, two views
per breast (CC and MLO) that could be unilateral or bilateral.
The corresponding radiologists’ scores for each DM exam were
in the form of forced Breast Imaging Reporting and Data System
(BI-RADS) scores (scale 1–5; 1¼negative, 2¼benign findings,
3¼probably benign, 4¼ suspicious abnormality, 5¼highly sus-
picious of malignancy) and/or probability of malignancy (PoM)
scores (scale 1–100). All interpretations involved single reading
by individual radiologists, differing from standard practice in
many screening programs, which use double reading plus con-
sensus or arbitration. Finally, the ground truth was defined in
terms of cancer present or absent, of each DM exam, confirmed
by histopathology and/or at least 1 year of follow-up.

In all datasets, the radiologists individually scored each DM
exam without time constraint and without access to other imag-
ing techniques or any AI systems. There were differences across
datasets (see Table 1) regarding study population and reading
workflow. Also, for some datasets, the radiologists had access to
priors (not processed by this version of this AI system). In total,
28 296 independent exam interpretations of 2652 cases (653 ma-
lignant) were collected. Differences in numbers between the orig-
inal study populations and the included populations are due to
images and/or readings lost during data archiving at the original
institutions (n¼ 13) as well as problems during processing with
the AI system (n¼ 7, eg, because the case contained implants).

Table 1 shows the distributions of the radiologists’ experi-
ence with mammography for each dataset, which resembles
the heterogeneous distribution seen in practice, as reported in
the original publications. Readers from the United States were
Mammography Quality Standards Act-qualified and included
an approximately even mix of general and breast-specialized
radiologists, and all the readers from Europe were specialized in
breast imaging and were qualified according to the European
guidelines for quality assurance in breast cancer screening (33).
For their studies, they were instructed to score simulating a
screening practice.

Statistical Analysis

The accuracy of the radiologists was compared to that of the AI
system with a noninferiority null-hypothesis based on differen-
ces in the area under the receiver operating characteristic (ROC)
curve (AUC). Only cases with malignant lesions were considered
positive. Because this AI system had not been tested before, we
did not assume a performance level prestudy and hence did not
calculate the power of this study. Instead, the study was per-
formed with as many data as could be gathered to have the
most robust conclusion possible.
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Noninferiority Testing
Noninferiority analysis (34–38) was used to compare the AI sys-
tem to the radiologists. The noninferiority margin was set at
0.05, because the differences below this margin were considered
clinically unimportant. Noninferiority was concluded if the AUC
difference AI � radiologists was greater than 0 and the lower
limit of the 95% confidence interval of the difference was
greater than the negative value of the noninferiority margin
(�0.05).

Primary Endpoint: Overall AUC Performance of the AI System vs 101
Radiologists
We pooled the datasets listed in Table 1 and compared the
reader-averaged AUC against the AUC of the AI system. The
public domain iMRMC software (version 4.0.0, Division of
Imaging, Diagnostics, and Software Reliability, OSEL/CDRH/FDA,
Silver Spring, MD) (36,37) was used, which can handle arbitrary
(not fully crossed) study designs, including the split-plot design
resulting when pooling datasets as in this study (39,40). The
software expects multiple readers but can treat a single reader
(the AI system) if the data are formatted properly. The iMRMC
software can also handle the mixed scoring scales in the differ-
ent datasets because the scores from different readers are never
compared. If PoM was available, it was preferred over BI-RADS
because it better samples the ROC space and is an ordinal scale
(41). For the AI system, its scoring examination-based scale (1–
10) was used for ROC analysis. We created reader-averaged ROC
curves by averaging the reader-specific, nonparametric (trape-
zoidal) curves along lines perpendicular to the chance line (42).
This average is area preserving; its AUC is equal to the reader-
averaged nonparametric AUCs.

The analysis of the MRMC data, which yielded the empirical
AUC values and their 95% confidence intervals, were computed
following U-statistics to provide unbiased estimates of the vari-
ance components (36,43). In this way, the total variance is
decomposed into eight moments from first principles (similar
to U-statistics) considering nondiseased cases separately from
diseased cases so that the total variance can be easily general-
ized to new readers, new nondiseased cases, and new diseased
cases.

Secondary Endpoints: Performance Comparisons for Each Dataset
As secondary endpoints, the AUC and operating points were
compared between the AI system and the average of radiolog-
ists for each dataset and against each individual radiologist.
The reported 95% confidence intervals are not adjusted for test-
ing multiple hypotheses, because the high amount of multiple
comparisons (N¼ 215) would make statistical testing impracti-
cal. Instead, this analysis is meant to be descriptive and to iden-
tify any possible outliers in the datasets.

Standard MRMC analysis of variance (ANOVA) was used to
compare the AUC between the AI system and the average of
radiologists based on the methods by Gallas et al. (36,37) imple-
mented in iMRMC. Similarly, as with the split-plot analysis de-
fined above, the AI system was defined as an independent
second modality.

The sensitivity at the radiologists’ specificity was compared
between the radiologists and the AI system as determined by a
screening scenario threshold (BI-RADS 3 or higher was consid-
ered positive, while in dataset C, radiologists directly indicated
whether the case was recalled or not). There was no recall infor-
mation for dataset B, which involved six radiologists (the origi-
nal study did not ask radiologists for a recall decision), and

therefore it was not included in this analysis. Consequently,
sensitivity could therefore only be computed for 95 radiologists.
The average sensitivity and specificity of the radiologists were
computed with iMRMC using a single-modality ANOVA with di-
chotomized scores as input. For the AI system, the operating
point of the ROC that was closest to the average radiologist’s
specificity was then selected to dichotomize the results.
Radiologists and AI system sensitivities were compared with
iMRMC using a standard MRMC two-modality ANOVA at the
same specificity level.

Results

Overall Performance: AI System vs 101 Radiologists

The AUC of the AI system (0.840, 95% CI ¼ 0.820 to 0.860) was
statistically noninferior to that of the 101 radiologists (0.814,
95% CI ¼ 0.787 to 0.841). The AUC difference was 0.026 (95% CI ¼
�0.003 to 0.055), slightly higher for the AI system at the range of
low and mid-specificity. The average ROC curves are displayed
in Figure 1.

The system had a higher AUC than 62 of 101 radiologists
(61.4%, Figure 2) and higher sensitivity than 55 of 95 radiologists
(57.9%, Figure 3), but its performance was always lower than
that of the best radiologist (Supplementary Table 1, available
online).

Performance Comparisons for Each Dataset

For each dataset, the AUC and sensitivity of the AI system were
similar to that of the average of the radiologists, and no outliers
were identified (Supplementary Tables 1 and 2, available on-
line). Absolute differences (AUC AI system – AUC average of
radiologists) varied between �0.008 and þ0.038 per dataset
(Supplementary Table 1, available online). The ROC curve of the
AI system is plotted against the radiologists’ ROC curves in
Supplementary Figure 1 (available online).

The average operating point of the radiologists was different
across datasets, with specificities ranging from 0.49 to 0.79 and
sensitivities between 0.76 and 0.84 (see Supplementary Table 2
and Figure 1, available online). At the average specificity of the
radiologists, the AI system had a higher sensitivity in five
of eight datasets (1.0%–8.0%) and lower in three datasets
(1.0%–2.0%).

Discussion

Our results clearly show that recent advances in AI algorithms
have narrowed the gap between computers and human experts
in detecting breast cancer in digital mammograms.
Nevertheless, the performance of AI was consistently lower
than the best radiologists in all datasets. The large and hetero-
geneous population of cases used in this study shows that our
findings might hold true across different lesion types, mam-
mography systems, and country-specific practices.

Across the collected data, differences were seen in the per-
formance of the readers. As expected, readings in the United
States had a lower average specificity than those in Europe,
where screening recall rates are lower (44). For dataset A, even
though performed in Europe, the average specificity is similar to
North American readings. Perhaps this is explained by the data-
set being mostly composed of breasts with high density, which
might have made radiologists modify their operating points.

A
R

T
IC

LE

A. Rodriguez-Ruiz et al. | 919

https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djy222#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djy222#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djy222#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djy222#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djy222#supplementary-data


The wide range in average AUC values (0.769–0.907) across datasets
shows that the difficulty of the populations varied substantially,
due to, for instance, inclusion of specific lesion types, different pro-
portions of enrichments, or availability of prior exams and/or
exams of the contralateral breast. It should be noted that the AUC
values for the radiologists were lower than those reported in US
clinical practice by the Breast Cancer Surveillance Consortium,
which are above 0.90 (45). This is likely because the datasets used
in this study were highly enriched with cancers and false positive
exams, resulting in a case set that is substantially more challenging
than a screening mammography set.

For the AI system, the performance was very close to the av-
erage of radiologists in all datasets. Interestingly, this also held

in all datasets (datasets B–D) where the AI system had the dis-
advantage of not considering information from the prior mam-
mograms, whereas the radiologists had access to available prior
images. The reader-averaged ROC curve of the 101 radiologists
was almost identical to that of the AI system at high specificity,
whereas the AI system showed slightly higher AUC at mid and
low specificity. Because these data were enriched with cancer
and benign lesions, the screening recall operating point of radi-
ologists was at the mid-range in specificity. At this fixed recall
specificity, the AI system achieved higher sensitivity than a ma-
jority of the radiologists.

However, given the fact that this database was not prospec-
tively defined for this study, caution should be taken in inter-
preting the results. In particular, although most exams in the
original studies are from screening and all radiologists were
instructed to score simulating a screening practice, the main
limitation of this study is that it was based on retrospective
reader studies of enriched case sets. Therefore, the human per-
formance was affected by a “laboratory effect” that reflects the
reading of enriched datasets (46,47). Because the main applica-
tion of such an AI system would be a screening setting, the
stand-alone performance of the AI system on actual screening
data should be studied, including the distribution of lesions
seen in screening and comparing it to the radiologists’ perfor-
mance during actual screening interpretation. Collecting such a
high number of cancer cases and prospective readings from a
similarly large number of radiologists in an actual screening
scenario would be notably challenging, however, requiring the
collaboration of a very large number of centers.

Even if the AI system performed comparably to the human
radiologists, there is still room for improvement. There is no a
priori reason why the AI system should not be performing at
least as the best radiologist. In our study, the AI system had an
AUC lower than the best radiologist in every dataset. This could
be explained by the fact that radiologists interpret more infor-
mation (eg, comparisons with prior exams and contralateral
breasts) than this version of this AI system. An ideal AI system
should be able to perform up to the limitations of the imaging
modality itself, in other words, be only incapable of detecting
mammographically occult cancers while minimizing false posi-
tive findings. Determining the trade-off between cancer detec-
tion and assessment of false-positive findings would then be
the only human choice involved. However, to achieve a higher-
than-human performance, the training of the AI systems might
need to not be based on truth as established by humans.

Future work, not assessed in our study due to lack of infor-
mation from the original studies, is to analyze the AI system
performance per lesion type, tumor characteristics, or lesion lo-
cation. For instance, evaluation of the sensitivity as a function
of false-positive findings, taking localization into account (ie,
using free ROC analysis) could be of interest, especially to verify
the potential of using such an AI system as a reader aid rather
than as a stand-alone reader. Moreover, although most cases
were collected from screening examinations, a limitation is that
we cannot know exactly how representative of an actual screen-
ing population our dataset is in terms of tumor size and types,
because these characteristics were not reported in the original
study publications. Similarly, it is unknown whether the better
performing radiologists were the radiologists with the most ex-
perience, because the original studies did not report the individ-
ual experience of each radiologist. Consequently, we cannot
assess whether the AI system performs better or worse than
radiologists as a function of the experience of the latter.
However, the heterogeneity of experience seen in our data is

Figure 1. Receiver operating characteristic curve comparison between the

reader-averaged radiologists and the artificial intelligence (AI) system in terms

of area under the curve (AUC). Parentheses show the 95% confidence interval of

the AUC.

Figure 3. Differences (%) in sensitivity between the artificial intelligence (AI) sys-

tem and each radiologist at the specificity of each radiologist considering BI-

RADS three and over as positive recall. BI-RADS ¼ Breast Imaging Reporting and

Data System.

Figure 2. Differences in area under the receiver operating characteristic curve

(AUC) between the artificial intelligence (AI) system and each radiologist.
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representative of that seen in screening practice. Consequently,
we can conclude that the AI system is as good as an average
screening radiologist.

AI that functions at the level of an expert radiologist for
breast cancer detection in DM images might herald a change in
the breast health-care workflow, whether in a screening or clini-
cal setting. Yet we still need to determine the optimal integra-
tion of such a system in the breast-care pathway prior to
assessing the final impact that this type of AI technology can
have on patient care.

In a population-based screening setting, the possibilities of
workflow enhancement via implementation of an AI system are
ample. One of the biggest potential benefits lies in the possibil-
ity of using such a system in countries that lack experienced
breast radiologists, which might, for instance, impede the de-
velopment, expansion, or continuation of screening programs.
In these situations, AI could be used as an independent, stand-
alone first or second reader (48).

In parallel, it could also be used as an interactive decision
support tool (27), pointing out potential lesions and preventing
overlook and interpretation errors that are relatively common
in the reading of DM (6–9). However, for this aspect, the impact
of automation bias in decision-making should be addressed.
Furthermore, it is well known that the very low prevalence of
breast cancer in the screening population reduces the perfor-
mance of radiologists, increasing the risk of false negatives
(47,49). An AI system tuned to achieve high sensitivity could be
used to automatically discard a substantial number of DM
exams that are most likely normal, reducing the workload and
resulting in a case set with a higher prevalence of cancer for
radiologists to read. The higher sensitivity of the AI system at
low specificity found in this study points to the feasibility of
this scenario. However, the drawbacks of introducing AI, espe-
cially as stand-alone readers, have to be studied. Regulations to
define the medicolegal consequences when AI fails would have
to be established. Equally, trade-offs between patient outcome
and cost-effectiveness have to be carefully addressed.

In conclusion, the tested AI system based on deep learning
algorithms has similar performance as an average radiologist
for detecting breast cancer in mammography. These results
were consistently observed across a large, heterogeneous,
multi-center, multi-vendor, cancer-enriched cohort of mammo-
grams. Although promising, the performance and fashion of im-
plementation of such an AI system in a screening setting
remains to be further investigated.
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